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ABSTRACT
Building the next-generation of extreme-scale distributed
systems will require overcoming several challenges related
to system resilience. As the number of processors in these
systems grows, the failure rate increases proportionally. One
of the most common sources of failure in large-scale systems
is memory errors. In this paper, we propose a novel run-
time for transparently exploiting memory content similarity
to improve system resilience by reducing the rate at which
memory errors lead to node failure. We evaluate the feasi-
bility of this approach by examining memory snapshots col-
lected from eight HPC applications. Based on the character-
istics of the similarity that we uncover in these applications,
we conclude that our proposed approach shows promise for
addressing system resilience in large-scale systems.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—fault-tolerance

1. INTRODUCTION
Building the next-generation of extreme-scale distributed

systems will require overcoming several challenges related to
system resilience. As we aggregate larger numbers of proces-
sors to construct more powerful systems, the rate at which
failures occur increases proportionally [29]. As the rate of
failures increases, more time is spent preparing for and re-
covering from failures and less time is spent doing useful
work. This effect is especially pronounced in systems that
employ traditional checkpoint/restart techniques, as the en-
tire computation has to be rolled back each time a failure
occurs [11, 8].

Memory-related errors are one of the most frequently ob-
served sources of node failure in large-scale distributed sys-
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tems [29]. Moreover, power concerns may exacerbate this
problem as we consider deploying low voltage memory chips
that are more prone to error [6].

In this paper, we present a novel approach for using con-
tent similarity in the memory of HPC applications to im-
prove resilience to uncorrectable memory errors. We then
evaluate its feasibility by examining the application memory
of eight HPC workloads running on a Cray XE6 supercom-
puter.

2. PROPOSED APPROACH
We propose to exploit memory content similarity to allow

applications to recover from uncorrectable DRAM ECC er-
rors that would otherwise lead to application termination or
node failure. The basic idea is that when a memory error
occurs on a page that is similar to one or more other pages
in the address space of an application, we can use informa-
tion about the page’s similarity to reconstruct the contents
of the damaged page without needing to terminate the af-
fected application or restart it from a known good state. Our
approach consists of two components: (a) classifying pages
to identify memory content similarity; and (b) using the
memory content similarity we identify to reconstruct pages
that suffer memory errors.

2.1 Page Classification
We begin by placing each page in the address space of an

application into one of four categories:

• duplicate pages : pages whose contents exactly match
one or more other pages and include at least one non-
zero byte.

• zero pages : pages whose contents are entirely zero.

• similar pages : pages that (a) are not duplicate or
zero pages; and (b) can be paired with at least one
other page in application memory such that the differ-
ence between the two can be represented by a cx bsdiff

[30] patch that is smaller than a tunable threshold.
The results in this paper were collected using a thresh-
old of 1024 bytes.

• unique pages : pages that do not fall into any of the
preceding three categories.

In practice, we can treat zero pages as duplicate pages.
If a memory error occurs on a zero page, reconstruction of
the damaged page is straightforward. However on some sys-
tems, zero pages may be an artifact of memory allocation



ASC Sequoia
Marquee
Performance
Codes [22]

AMG
A parallel algebraic multigrid solver for linear systems arising from problems on
unstructured grids [14].

IRS
Implicit Radiation Solver. Solves the radiation transport equation by the flux-
limited diffusion approximation using an implicit matrix solution [20].

DOE Production
Applications

CTH A multi-material, large deformation, strong shock wave, solid mechanics code [25]

LAMMPS
Large-scale Atomic/Molecular Massively Parallel Simulator. A classical molecular
dynamics simulator [27].

Mantevo Mini-
Applications
[26], [15]

HPCCG
Designed to mimic the finite element generation, assembly and solution for an un-
structured grid problem.

phdMesh
Parallel Heterogeneous Dynamic Mesh. An application designed to mimic the con-
tact search applications in an explicit finite element application.

Miscellaneous
Applications

SAMRAI
Structured Adaptive Mesh Refinement Application Infrastructure. Designed to en-
able the application of structured adaptive mesh refinement to large-scale multi-
physics problems [21].

Sweep3D
Solves a 1-group time-independent discrete ordinates (Sn) 3D cartesian (XYZ) ge-
ometry neutron transport problem. [24]

Table 1: A brief summary of HPC applications used

and may not represent memory that is actually being used.
But if zero pages represent unused memory, they cannot be
the source of memory errors. Therefore, zero pages can only
increase the protective effect of our approach. Nonetheless,
because we cannot determine which zero pages are actu-
ally used, our analysis distinguishes between zero pages and
duplicate pages. The result is an underestimate of the pro-
tective benefit of our approach.

2.2 Page Reconstruction
When an uncorrectable ECC error is detected in an x86

system, the memory controller raises a Machine Check Ex-
ception (MCE) in the processor. The consequences of raising
an MCE vary by operating system. Recent versions of Linux
attempt to minimize the impact of an MCE by adopting sim-
ple recovery strategies. For example, in the event that the
memory is unmapped,1 the hardware page is poisoned and
no other action is required. In the event that none of its re-
covery strategies is successful, Linux poisons the hardware
page and kills all of the processes that had the faulted page
mapped into their address space [19]. In other operating sys-
tems (e.g., the Kitten lightweight kernel [28], older versions
of Linux), raising an MCE simply crashes the node.

For each duplicate or similar page, we maintain a descrip-
tion of its reference page(s) (i.e., the other pages in the sys-
tem that are either duplicated by or similar to the page
under consideration). In the case of similar pages, we also
store the appropriate patch data. Because the patches gen-
erated by cx bsdiff are not symmetric, every similar page
requires its own patch data.

When a memory error occurs on a similar or duplicate
page, we can use the metadata that we have collected to re-
construct the faulted page. Reconstructing duplicate pages
is straightforward. We simply restore the contents of the

1This might happen if, for example, the MCE was raised by
a memory scrubber. However, given the analysis in [17] it is
not clear that this is a common scenario.

damaged page from the contents of one of its reference pages.
For similar pages, the process is only modestly more com-
plex. We reconstruct the damaged page by applying a patch
to one of its reference pages.

3. EVALUATION
We examined memory content similarity in systems run-

ning the eight HPC workloads described in Table 1 to de-
termine the viability of our proposed approach. This set of
applications are representative of several important work-
loads. In particular, three of these applications, AMG, IRS
and LAMMPS, are taken from the ASC Sequoia Marquee
Performance Codes: a set of codes that was assembled ex-
pressly for ensuring that key workloads would perform well
on the Sequoia supercomputer at Lawrence Livermore Na-
tional Laboratory. Additionally, our set includes two impor-
tant U.S. Department of Energy (DOE) production applica-
tions: CTH and LAMMPS.

We generated the data presented in this paper by running
each application using MPICH on 8 nodes of a Cray XE6
supercomputer. We used 8 processes on each node for a total
of 64 MPI ranks.

3.1 Data Collection
We built a library, libmemstate, to collect snapshots of

the applications’ memory and linked it against each of the
target applications. The MPI Profiling layer allows us inter-
pose libmemstate in all calls by the application to MPI Init

and MPI Finalize. By intercepting the call to MPI Init,
libmemstate is able to snapshot the application’s memory
after initialization but before the application has started exe-
cution. To generate a snapshot of the application’s memory,
libmemstate reads the /proc/<pid>/maps file provided by
Linux to gather information about the application’s address
space. Based on the information it gathers, libmemstate is
able to write a copy of the address space to stable storage.

After the initialization snapshot is complete, libmemstate



sets a timed signal (SIGALRM) that allows it to periodically
snapshot memory as the application runs. We collected the
data in this paper by configuring libmemstate to capture a
memory snapshot every 60 seconds of application execution
time.

The process is similar when the application calls MPI Fi-

nalize. The MPI Profiling layer interposes a call to lib-

memstate. This allows libmemstate to take a finalization
memory snapshot and disable its timer.

Each snapshot includes all of the application’s heap, stack
and anonymous memory. We excluded memory-mapped
files because the majority of pages that corresponding to
memory-mapped files in the applications that we considered
are mapped read-only. The most straightforward way to re-
cover these pages is to re-read their contents from the back-
ing store. As a result, our approach offers little additional
protective benefit. However, we can, in practice, use pages
backed by stable storage as reference pages for other pages
in application memory. But because of this asymmetry, we
excluded pages that correspond to memory-mapped files to
simplify our analysis.

3.2 Data Analysis
After we collected snapshots of the applications’ memory,

we analyzed them offline. For each snapshot, we walked
through the application’s virtual address space from low ad-
dresses to high, categorizing each page of memory into one
of the four categories described above: (a) duplicate; (b)
similar; (c) zero; or (d) unique. Identifying zero pages is
straightforward. However, identifying duplicate and similar
pages require more care.

3.2.1 Duplicate Pages
Naively, identifying duplicate pages is a O(n2) operation.

To reduce the cost of identifying duplicate pages, we com-
pute the MD5 sum of each page and use it as the key of
a hash table. Each collision represents a duplicate page.
Although it is conceivable that two or more different pages
could yield the same MD5 sum, we assume that the memory
contents of the applications we consider are not adversarial.
As a result, by using the birthday problem [16], it can be
shown that the likelihood of such an event is exceedingly
small (i.e., ≈ 10−14) even for very large memory snapshots
[33].

3.2.2 Similar Pages
As with identifying duplicate pages, the naive approach to

identifying similar pages is an O(n2) operation. To mitigate
this cost, we use an approach inspired by [13]. Instead of
computing patches between every pair of pages, we attempt
to identify a tractably small set of pages for each candidate
page that are likely to be similar to it.

During initialization, we randomly choose four locations
in a 4kB page of memory. For each page that we examine, we
collect one 128-byte block at each of these locations. Each
of these blocks is used as a signature of the page contents.

As we examine each candidate page in the address space
of an application, we identify pages that match one or more
of the candidate page’s signatures. In the event that more
than one page matches a single signature we choose the page
nearest to the candidate page. This approach identifies up
to four pages that may be similar to the current candidate
page. In addition to these pages, we also consider the page

that occupies the next lowest virtual address in use in the
application’s address space. In all, this approach identifies
as many as five pages that are likely to be similar to the
candidate page.

We then compute a patch between the current candidate
page and each member of the set of likely similar pages. If
any patch is smaller than a threshold, in this case 1024 bytes,
we mark the current candidate page as similar. Because
cx bsdiff does not generate symmetric patches, observing
a single patch that falls below our threshold is sufficient to
categorize only a single page as similar. Therefore, we also
compute the reciprocal patch of each of the pages in the set
of likely similar pages to determine whether any of them
should also be marked as similar.

As in [13], this is a statistical, heuristic approach. Al-
though there may be more effective ways of identifying sim-
ilar pages, the fraction of similar pages we identify using
this approach is a lower bound on the total number of simi-
lar pages in application memory.

3.3 Repeatability
Non-determinism exists in our methods for collecting and

analyzing data. With respect to data analysis, the source
of non-determinism is explicit: as described above, we ran-
domly choose the locations of four signatures. To begin to
understand the variation introduced by this approach, we
ran our analysis scripts ten times (randomly choosing the
four signature locations each time) on the memory snap-
shots collected for LAMMPS. We observed that the number
of similar pages varied by less than 0.23% across all of the
snapshots (excluding the initialization and finalization snap-
shots) we collected.

With respect to data collection, the timers we use to de-
termine the interval between memory snapshots are not pre-
cise. As a result, from run to run we cannot be sure that the
snapshots are taken precisely relative to the application’s
progress. Therefore, it is unlikely that any two sequences
of memory snapshots will agree on the exact contents of
memory at any given time. Moreover, there may be some
variability in the layout of each application’s address space
that may effect the content of the pages in an application’s
memory.

To begin to understand the extent of the variability in
our data collection mechanism, we collected memory snap-
shots for ten separate runs of LAMMPS. We then used our
analysis scripts to categorize the pages for each sequence of
memory snapshots. To control for the variability introduced
by our analysis scripts, we fixed the locations of the four sig-
natures used in our similarity detection algorithm. We ob-
served that the percentage of similar pages varied by up to
27%, ranging from 15.6% to 20.0% of application memory.

Figure 1 demonstrates one possible source of this vari-
ation. For LAMMPS, a significant majority of the patches
are between 1024 and 2047 bytes in size, just larger than our
patch threshold of 1024 bytes. As a result, small changes in
the content of a page (e.g., because the memory snapshots
across executions are not synchronized relative to execution
time) have the potential to cause many pages to be recate-
gorized.
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Figure 1: The percent of similar pages for rank 0 as
a function of patch size threshold

4. RESULTS
In this section, we present the results of our examination.

We also discuss why these results are promising for the ap-
proach we propose.

4.1 Overview
We begin with Figure 2 in which we present the fraction

of each application’s address space that falls into each of the
four categories described above. Excluding the initialization
and finalization snapshots, this figure presents the results for
the memory snapshot for rank 0 that contains the smallest
fraction of similar and duplicate pages.
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Figure 2: Page categorization within Rank 0 for each
application. Each bar represents the page catego-
rization for the memory snapshot that contained the
smallest fraction of similar and duplicate pages.

The first observation we make is that five of the applica-
tions (AMG, IRS, CTH, HPCCG and phdMesh) exhibit a
significant fraction (greater than 35%) of similar and dupli-
cate pages. We also observe that in no case is the fraction
of similar and duplicate pages less than 20% of application

memory. More details about page categorization for each
application are available in [23].

4.2 NUMA
We ran all of our tests on a Cray XE6 system. Because

each of the XE6 compute nodes uses a NUMA architecture,
we may be able to increase similarity by considering memory
across processes.

Each compute node of the XE6 contains two 8-core AMD
Opteron Magny-Cours processors. Each Magny-Cours pro-
cessor is divided into two NUMA domains. Each NUMA
domain is comprised of four cores [31]. We used the default
MPICH layout method which results in SMP-style place-
ment of MPI ranks. Based on this architecture, we were
able to group our memory snapshots by rank to effectively
examine content similarity within a NUMA domain for each
application. The results of considering memory across a
NUMA domain are shown in Table 2.

Expanding the scope of memory significantly increased the
number of duplicate pages in memory of most of the applica-
tions we considered. For example, in LAMMPS, the number
of duplicates increased by 148.6%. However, the number of
similar pages decreased by nearly an equal amount for ev-
ery application we considered. As a result, processing the
memory in a NUMA domain collectively yielded very mod-
est increases in the total fraction of similar and duplicate
pages.

Therefore, for many applications, there may be little in-
centive to consider application memory within a NUMA do-
main collectively. However, because the cost of computing
and storing metadata is higher for similar pages than for du-
plicate pages, there is a tradeoff to be made between local,
similar pages and remote, duplicate pages.

4.3 Modification Behavior
The approach we propose will also impose a temporal

overhead: the time required to maintain metadata will be
deducted from the time that the application would otherwise
run. The magnitude of the temporal overhead will depend
largely on the frequency with which similar and duplicate
pages are modified. Each time a similar or duplicate page
is modified, we no longer know the relationship between the
page and its reference page(s). As a result, we need to up-
date our metadata to account for this change. The more
rapidly that similar and duplicate pages change, the higher
the temporal overhead of managing metadata will be.

Application
Changed Changed Changed Changed Changed

1+ Times 1 Time 2 Times 3 Times 4+ Times

AMG2006 20.8 % 9.9 % 5.4 % 1.7 % 3.8 %

CTH 38.9 % 6.9 % 3.5 % 13.7 % 14.8 %

IRS 32.8 % 18.3 % 0.2 % 0.0 % 14.3 %

LAMMPS 37.6 % 0.5 % 0.6 % 0.5 % 36.0 %

SAMRAI 79.5 % 13.6 % 7.7 % 32.0 % 26.3 %

HPCCG 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

phdMesh 21.6 % 6.2 % 1.9 % 0.5 % 13.0 %

Sweep3D 4.1 % 1.7 % 0.7 % 0.0 % 1.8 %

Table 3: Modification behavior of the pages in the
memory of Rank 0 that are ever categorized as sim-
ilar or duplicate.

To get a sense of how frequently similar and duplicate
pages change, we compared the memory contents across the



Application
Rank 0-3 NUMA Domain ∆ ∆ % Increase

# Similar # Duplicate Total # Similar # Duplicate Total Similar Duplicate Total

AMG2006 269748 185119 454867 222675 234162 456837 -47073 49043 0.4 %

CTH 27688 40507 68195 4691 63583 68274 -22997 23076 0.1 %

IRS 15085 55235 70320 11210 59320 70530 -3875 4085 0.3 %

LAMMPS 57922 14299 72221 36770 35541 72311 -21152 21242 0.1 %

SAMRAI 7841 4003 11844 4451 7437 11888 -3390 3434 0.4 %

HPCCG 297155 557443 854598 76327 778302 854629 -220828 220859 0.0 %

phdMesh 192590 8005 200595 188845 13921 202766 -3745 5916 1.1 %

Sweep3D 3748 3376 7124 965 6183 7148 -2783 2807 0.3 %

Table 2: Effect of considering the nodes in a single NUMA domain collectively. Although the number of
duplicate pages increases significantly when all of the application memory in a NUMA domain is considered,
these gains are almost entirely offset by reductions in the number of similar pages.

sequence of snapshots we collected for each application. By
hashing each page, we were able to determine whether a
given page in the application’s virtual address space changed
from one snapshot to the next.2 Table 3 shows the modifi-
cation behavior for all of the pages in application memory
that are ever classified as duplicate or similar.

The data in this table suggests that for most applications,
a substantial majority of the similar and duplicate pages are
either read-only/read-mostly or are written to without being
modified [10]. For five of the eight applications (AMG, IRS,
HPCCG, phdMesh and Sweep3D), more than 84% of the
similar and duplicate pages are modified either once or not
at all.

The modification behavior of HPCCG is particularly strik-
ing; a vanishingly small percentage of its similar or dupli-
cate pages are ever modified. A more detailed examination
of HPCCG’s application memory [23] reveals that the range
of the application’s address space occupied by similar and
duplicate pages is almost entirely disjoint from the range
occupied by modified pages. Similar and duplicate pages
are confined to the low end of the virtual address space and
modified pages occupy the high virtual addresses. We spec-
ulate that because HPCCG is a conjugate gradient solver,
the low end of the virtual address space contains the sparse
matrix that is provided as input (and is never modified) and
the high virtual addresses contain the solution vector that
is refined on each iteration.

Although many of these results are promising, the results
for SAMRAI indicate that there are applications that fre-
quently modify similar and duplicate pages. Unlike the other
applications that we considered, a majority of the similar
and duplicate pages in the memory of SAMRAI are modi-
fied at least once; more than half are modified three or more
times.

Taken as a whole, these results indicate that similar and
duplicate pages are comprised largely of read-only and read-
mostly data. As a result, the metadata associated with these
pages need only be infrequently updated. This evidence sug-
gests that, for many applications, the overhead of our pro-
posed approach will be manageable and commensurate with
its protective effect.

2This approach may underrepresent the frequency of page
modifications because it does not account for modifications
that occur between memory snapshots.

4.4 Patch Size Threshold
The patch size threshold represents a trade-off between

the number of pages that are similar and the quantity of
metadata that must be maintained. A threshold of 1024
bytes strikes a conservative balance between maximizing
similarity and minimizing metadata. For six of the eight ap-
plications that we considered, the metadata associated with
1024-byte threshold would occupy less than 1.5% of the ap-
plication memory. The metadata for AMG and phdMesh
would occupy a slightly larger, but still modest, fraction
(4.0% and 5.8%, respectively) of the application’s memory.
By changing the patch size threshold, we can strike a dif-
ferent balance between the number of similar pages and the
size of the associated metadata.
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Figure 3: The percent of similar and duplicate pages
as a function of metadata size. On each of the
curves, a solid circle indicates the point on the curve
that corresponds to a patch threshold of 1024 bytes.

Figure 3 shows the fraction of similar and duplicate pages
as a function of metadata size for three applications. The
slope of the curves represents the ratio of cost to benefit.
For applications like AMG and phdMesh, we can extract
significant similarity with a small increase in metadata. In
particular, for phdMesh, if we allow the metadata to occupy
even a small fraction of application memory we see dramatic



gains in the number of similar pages. IRS represents an
application in which the benefits come at a higher cost.

4.5 Input Effects
In addition to variations among applications, the input

description for each application has the potential to impact
the extent of content similarity. To begin to understand the
effect of choice of input, we examined the memory of CTH
and LAMMPS for several different inputs.

For CTH, we considered two inputs: (a) a model of the
detonation of a conical explosive charge; and (b) a model of
a fragmenting pipe. All preceding results for CTH presented
in this paper were obtained using the conical shape charge
input.
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Figure 4 shows the fraction of similar and duplicate pages
for each input. Each colored box represents the average
fraction of similar or duplicate pages over the lifetime of
the application (excluding the initialization and finalization
snapshots). The error bars represent the minimum and max-
imum fraction of each category observed over the run. For
the fragmenting pipe input, we observed substantially higher
percentage of similar pages than for the conical charge in-
put. The relative frequency of similar and duplicate pages
is also noticeably different between the two inputs. For the
conical charge input, there are 60% more duplicate pages
than similar pages whereas for the fragmenting pipe input,
there are less than half as many duplicate pages as similar
pages.

For LAMMPS, we considered four potentials as input: (a)
Lennard-Jones (LJ); (b) Embedded Atom Model (EAM); (c)
Rhodopsin (Rhodo) protein; and (d) SNAP3. All preceding
results for LAMMPS presented in this paper were obtained
using the LJ potential.

Figure 5 shows that the percentage of similar pages in the
SNAP and Rhodo potentials is nearly twice as large as for
the LJ and EAM potentials. Additionally, the fraction of

3SNAP is a computationally intensive potential that uses
the same kernel as the GAP potential. [2]
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Figure 5: The effect of using different potentials as
input on the fraction of similar and duplicate pages
observed in the application memory of LAMMPS

duplicate pages is substantially lower for the Rhodo input
than for the other three inputs.

These results illustrate that content similarity varies not
only across applications but also across inputs to a single
application.

5. RELATED WORK
Memory content similarity has been explored for more

than a decade. As a result, a significant body of relevant
research has emerged. Although memory content similarity
has been examined in several contexts, the preponderance of
the relevant research has been in virtualization. In [5], the
authors introduced the concept of transparent memory shar-
ing in VMMs. By intercepting disk requests that DMA data
into memory, the Disco VMM could consolidate read-only
pages (e.g., text segments of applications, read-only pages
in the buffer cache) containing data from the disk across
virtual machines. In some cases, this approach allowed the
Disco VMM to significantly reduce memory consumption.

More recently, [32] described the broader approach to mem-
ory de-duplication that is used in the VMware ESX server.
Instead of intercepting disk requests, the authors propose
identifying all pages in a virtual machine by their contents.
When any two pages are found to have the same contents,
the pages are consolidated using copy-on-write (COW). Ap-
plying this approach to systems running as many as 10 iden-
tical VMs running the SPEC95 benchmark on Linux, the
VMware ESX server is able to reduce memory consumption
by nearly 60%.

The authors of [33] advocate broadening the scope of shar-
ing in virtualization to consider intranode sharing. To evalu-
ate the feasibility of this approach, they consider the preva-
lence of intranode sharing between nodes running several
HPC applications. For some workloads (notably HPCCG),
they observe that significant inter- and intra-node sharing
opportunities exist. Based on these promising results, they
propose a Content-Sharing Detection System for exploiting
intranode sharing in virtualized environments. Similarly,



SBLLmalloc has been used to demonstrate that memory
consumption can be significantly reduced by consolidating
duplicate pages in the application memory of several HPC
applications [3].

Most memory de-duplication research has considered con-
solidating only duplicate pages. However, the Difference En-
gine [13] introduced the idea that similar pages could also
be consolidated. In this context, two pages are similar if the
difference between them can be represented by an xdelta

patch file that is smaller than 2kB.
In addition to virtualization, content duplication has been

effectively exploited in other domains. In context of data
storage, reducing storage requirements in primary and archival
data storage applications by eliminating duplicate data blocks
has been widely studied [35, 34]. Kernel Shared Memory
(KSM) allows duplicate memory to be consolidated in Linux
with or without virtualization [1].

A number of resilience techniques have been explored for
HPC. Traditional checkpoint/restart [8, 9] is the most com-
mon approach. Asynchronous checkpointing [18, 12] and
replication [11] have also been considered. In addition to
these system-level approaches, algorithm-based techniques
for enabling applications to withstand memory errors have
been explored [4, 7]. In contrast, our approach will allow the
system to transparently recover from memory errors without
requiring application restart or detailed application knowl-
edge.

6. CONCLUSION & FUTURE WORK
In this paper, we have described a novel approach for im-

proving system resilience by exploiting similarities in system
memory. We have also demonstrated the feasibility of this
approach by presenting data indicating that significant sim-
ilarity exists in several important HPC applications. We
draw four specific conclusions from the data and analysis
presented here.

• Significant similarity (greater than 35%) exists for sev-
eral applications even with a conservative patch size
threshold. Given the extent of memory content simi-
larity, if we assume that memory errors are distributed
uniformly over the virtual address space of an appli-
cation, the approach we propose has the potential to
reduce the rate of memory-induced application failure
by a significant fraction.

• Most of the similarity and duplication comes from pages
that are modified infrequently. This suggests that the
temporal overhead of our proposed approach may be
manageable relative to its protective benefit.

• For the applications that we considered, expanding the
scope of the memory that we consider to include a
NUMA domain provides a very modest improvement.
This effect is due to the fact that the increase in du-
plicate pages is largely offset by a decrease in similar
pages. Nonetheless, there may be circumstances in
which we should choose local, similar pages over re-
mote, duplicate pages. The costs and benefits of this
trade-off will be explored more fully in our future work.

• Memory content similarity is not determined by the
application alone. Even for a single application, the
degree to which application memory is comprised of

duplicate and similar pages varies significantly across
inputs.

While these results are promising, we have not yet col-
lected data on the impact of this approach on execution
runtime. However, based on existing work in memory de-
duplication [13, 3] we are optimistic that the execution time
overhead will be reasonable. For example, in [13] the au-
thors showed that application performance in systems using
the Difference Engine, which also exploits page similarity at
runtime, was within 7% of native.

Taken as a whole, these initial results suggest that using
memory content similarity may be a very effective technique
for correcting errors in application memory. As a result,
we intend to pursue this idea further and to begin work
on implementing a runtime that can, by exploiting memory
content similarity, reduce the rate at which memory errors
lead to node failure.
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